Ultrasonically encoded photoacoustic flowgraphy in biological tissue.
نویسندگان
چکیده
Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24 mm·s(-1)} was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.
منابع مشابه
In vivo optically encoded photoacoustic flowgraphy.
We present an optically encoded photoacoustic (PA) flow imaging method based on optical-resolution PA microscopy. An intensity-modulated continuous-wave laser photothermally encodes the flowing medium, and a pulsed laser generates PA waves to image the encoded heat pattern. Flow speeds can be calculated by cross correlation. The method was validated in phantoms at flow speeds ranging from 0.23 ...
متن کاملTime-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths.
In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of long coherence length illuminates a tur...
متن کاملTime-reversed ultrasonically encoded optical focusing in biological tissue.
We report an experimental investigation of time-reversed ultrasonically encoded optical focusing in biological tissue. This technology combines the concepts of optical phase conjugation and ultrasound modulation of diffused coherent light. The ultrasonically encoded (or tagged) diffused light from a tissue sample is collected in reflection mode and interferes with a reference light in a photore...
متن کاملPhotoacoustic image reconstruction of melanoma in skin tissue using time reversal method
This article has no abstract.
متن کاملMapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light.
Knowledge of the local optical fluence in biological tissue is of fundamental importance for biomedical optical techniques to achieve quantification. We report a method to noninvasively measure the local optical fluence in optically inhomogeneous scattering media. The concept is based on two aspects: the local tagging of light using ultrasonic modulation and the photon path reversibility princi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 111 20 شماره
صفحات -
تاریخ انتشار 2013